The influence of glottal cross-section shape on theoretical flow models.

نویسندگان

  • Bo Wu
  • Annemie Van Hirtum
  • Xavier Pelorson
  • Xiaoyu Luo
چکیده

Physical and mathematical phonation models commonly rely on a quasi-one-dimensional flow model. The assumption of quasi-one-dimensional flow through a glottis with fixed length is analyzed for different cross-section shapes: Circle, rectangle, ellipse, and circular segment. A simplified flow model is formulated which accounts for kinetic losses, viscosity, and cross-section shape. It is seen that the cross-section shape cannot be neglected since it alters boundary layer development and hence the viscous contribution to the pressure drop across the glottis. The commonly applied quasi-one-dimensional flow model is shown to be inaccurate, indicating the potential benefit of taking into account the cross-section shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady Flow Through Modeled Glottal Constriction

The airflow in the modeled glottal constriction was simulated by the solutions of the Navier-Stokes equations for laminar flow, and the corresponding Reynolds equations for turbulent flow in generalized, nonorthogonal coordinates using a numerical method. A two-dimensional model of laryngeal flow is considered and aerodynamic properties are calculated for both laminar and turbulent steady flows...

متن کامل

Influence of glottal cross-section shape on phonation onset.

Phonation models commonly rely on the assumption of a two-dimensional glottal geometry to assess kinetic and viscous flow losses. In this paper, the glottal cross-section shape is taken into account in the flow model in order to capture its influence on vocal folds oscillation. For the assessed cross-section shapes (rectangular, elliptical, or circular segment) the minimum pressure threshold en...

متن کامل

Shape Effects and Definition of Hydraulic Radius in Manning 's Equation in Open Channel Flow

In the Manning equation the hydraulic radius can be defined as the cross-section dimension of the shape. In pipe flow the bed shear stress is assumed to be uniformly distributed along the wetted perimeter which cannot be true in open channel flow. Hence, three approximation of the true boundary shear-stress distribution are examined and more practical conveyance depth or resistance radius formu...

متن کامل

Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter

In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...

متن کامل

Resistance to Flow in a V-Shaped Bottom Channel

Water flow in open channels is always subject to the resistance to flow and energy dissipation. For design purposes, one of the needed variables is the hydraulic resistance coefficient. For this mean, the influence of cross-sectional shape together with secondary flow cells and lateral distribution of true boundary shear stress have not yet been fully explored. This paper surveys the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 134 2  شماره 

صفحات  -

تاریخ انتشار 2013